Главная » Файлы » Дистанционное обучение » Сварочное производство 2 курс

Физика 23.03.20
22.03.2020, 19:17

Построение векторных диаграмм. Расчет параллельных цепей однофазного переменного тока.

Повторите составления законов Кирхгофа смотреть лекции, а так же для тех у кого этого нет прилагается видео с рассмотрением:

https://www.youtube.com/watch?v=XgTFQtIDjHQ

Построение векторных диаграмм.

Любую характеристику электротехнической цепи, изменяющуюся по синусоидальному или по синусоидальному принципу, можно отобразить посредством точки на поверхности, в соответствующей системе величин. В качестве размерности по оси Х выступает действительный компонент параметра, по оси Y размещается воображаемая составляющая. Именно такие составляющие входят в алгебраическую модель записи комплексной величины. Последующее соединение точки на поверхности и нулевой точки системы координат позволит рассматривать эту прямую и ее угол с действительной осью как изображение комплексного числа. На практике положительно направленный отрезок принято называть вектором.

Векторной диаграммой принято называть множество положительно направленных отрезков на комплексной поверхности, которая соответствует комплексным значениям и параметрам гальванической цепи и их взаимосвязям. По своему характеру векторные диаграммы подразделяются на:

  • точные гистограммы;
  • качественные гистограммы.

Особенностями достоверных гистограмм является соблюдение пропорций всех характеристик и параметров, полученных путем вычислений. Данные диаграммы находят свое применение в проверке ранее проведенных расчетов. В основе использования качественных гистограмм лежит учет взаимного влияния характеристик друг на друга, и в основном они предшествуют расчетам либо заменяют их.

Векторные диаграммы токов и напряжений визуально отображают процесс достижения цели по расчету электротехнической цепи. При соблюдении всех правил по построению векторных отрезков можно просто из гистограммы установить фазы и амплитуды вещественных характеристик. Построение качественных гистограмм поможет контролировать правильный процесс решения задачи и с легкостью определить сектор с определяемыми векторами. В зависимости от особенностей построения, графические диаграммы делятся на такие типы:

  1. Круговая диаграмма, представляющая собой графическую гистограмму, образованную вектором, описывающим своим концом круг или полукруг, при любых изменениях характеристик цепи.
  2. Линейная диаграмма, представляющая собой графический рисунок в виде прямой линии, образованной вектором, посредством изменения характеристик цепи.

Построение векторной диаграммы напряжений и токов

Для лучшего понимания того, как построить векторную диаграмму токов и напряжений, следует рассматривать RLC цепь, состоящую из пассивного элемента в виде резистора и реактивных элементов в виде катушки индуктивности и конденсатора.

Схема цепи с последовательным соединением элементов

Перед тем, как построить векторную диаграмму токов и напряжений, необходимо охарактеризовать все известные параметры цепи. Согласно схемы цепи, изображенной на картинке:

U – величина переменного напряжения в текущий момент времени;

I – мощность тока в заданный момент времени;

UА – напряжение, падающее на активном сопротивлении;

UC – напряжение, падающее на емкостной нагрузке;

UL – напряжение, падающее на индуктивной нагрузке.

Поскольку входное напряжение U изменяется по колебательному закону, то сила тока характеризуется уравнением:

I=Im*cosωt, где: Im – максимальная амплитуда тока; ω – частота тока; t – время.

Суммарное входное напряжение, в соответствии со вторым законом Кирхгофа, равно общей величине напряжений на всех элементах цепи:

U=UC+UL+UA.

В соответствии с законом Ома, падение напряжения на резистивном компоненте равняется:

UA= Im*R*cosωt.

Противодействие току активного элемента зависит сугубо от свойства проводника и не обуславливается ни характеристиками тока, ни аспектом времени и, соответственно, имеет идентичный с напряжением фазовый сдвиг.

Поскольку конденсатору в цепи с электротоком, изменяющимся по синусоиде, свойственно наличие реактивного емкостного сопротивления, и ввиду того, что напряжение на нем постоянно имеет фазовое отставание от протекающего тока на π/2, то уместно выражение:

  1. RC=XC=1/ωC;
  2. UC=Im*RС*cos(ωt-π/2)

, где: RC – сопротивление конденсатора; XC – реактивный импеданс конденсатора; C – емкость конденсатора.

Реактивное индуктивное сопротивление катушки индуктивности обуславливается наличием изменяющегося по синусоидальному закону электротока, и поскольку напряжение на любом отрезке времени имеет фазовое опережение по отношению к электротоку на π/2, то формула, описывающая колебательный процесс на элементе, выглядит как:

  1. RL=XL=ωL;
  2. UL=Im*RL*cos(ωt+π/2)

, где: RL – сопротивление катушки индуктивности; XL – реактивный импеданс катушки индуктивности; L – индуктивность катушки.

Следовательно, общее напряжение, подведенное к цепи, выглядит:

U=Um*cos(ωt±φ), где: Um – максимальная величина напряжения; φ – фазовый сдвиг.

Ввиду того, что напряжение и электроток изменяются по синусоидальному закону, и их фиксированные показатели отличаются лишь фазовым сдвигом, то данные величины строятся как вектора.

В соответствии с законом сохранения электрического заряда, в любой момент времени сила протекающего тока одинакова, то целесообразно сформировать векторную гистограмму токов.

Векторная диаграмма токов и напряжений RLC цепочке

Пусть по оси Х отображается амплитудное значение электротока в цепочке. Поскольку напряжение и электроток на резисторе имеют одинаковый фазовый сдвиг, то вектора данных характеристик будут ориентированы в одну сторону, согласно картинке а.

Напряжение на емкостной нагрузке отстает от электрического тока на π/2, и его вектор будет направлен под прямым углом вниз, перпендикулярно напряжению активного сопротивления, согласно картинке в.

Напряжение на индуктивной нагрузке опережает электрический ток на π/2, и ее вектор будет ориентирован под прямым углом вверх, перпендикулярно напряжению на активном сопротивлении, согласно картинке б.

Для наглядности векторных преобразований пусть UL>UС. Сложив вектора напряжений на реактивных компонентах, получаем, что вектор UL-UС будет направлен перпендикулярно вверх. Суммировав вектора разности напряжений на реактивных компонентах и напряжения на сопротивлении получаем вектор, характеризующий дисперсное значение общего напряжения, согласно картинке 2(б).

Аналогично электрическому току, изменяющемуся по синусоидальному закону, напряжение меняется по такому же закону, однако с некоторым фазовым сдвигом. Наблюдается постоянный фазовый сдвиг между напряжением и током.

После простых преобразований по постулату Ома, уравнение полного импеданса заданной электрической цепи выглядит как:

Z=√R2+(1/ωC- ωL)2.

Векторная гистограмма общего и реактивных сопротивлений изображена на картинке 2в.

Построение векторных диаграмм токов и напряжений может значительно упростить процесс расчета характеристик контура. Вместе с тем сама процедура позволит наглядно видеть поведение исследуемых характеристик, в зависимости от входных величин. При большом объеме вычислительных операций целесообразно воспользоваться одной из онлайн программ по построению векторных графиков.

Если после этого материала остались вопросы, то обязательно посмотрите видео:

https://www.youtube.com/watch?v=7au9OB0m92w

Рассмотреть решение задачи: Расчет параллельных цепей однофазного переменного тока:

https://www.youtube.com/watch?v=C1eoxHXOUjs - (домашнее задание по этой задаче под номером 2,3)


Домашнее задание:

  1. Разобрать и сделать делать конспект по теме: "Построение векторных диаграмм".
  2. Дорешать задачу на нахождение полной мощности параллельной цепи однофазного переменного тока представленную в видео.
  3. Построить к этой задаче векторную диаграмму.

Отправляете фото или Word-файл с решенной задачей и картой звездного неба на электронный адрес lenr89@mail.ru, не забываем подписать группу и ФИО.

Категория: Сварочное производство 2 курс | Добавил: lenr89
Просмотров: 65 | Загрузок: 0 | Рейтинг: 0.0/0
Всего комментариев: 0
avatar