Главная » Файлы » Дистанционное обучение » Теплотехники 1 курс

Физика 17.05.21
17.05.2021, 08:07

"Характеристики колебательного движения. Превращение энергии.Резонанс. Волны и их характеристики"

Колебательное движение

Особый вид неравномерного движения - колебательное. Это движение, которое повторяется с течением времени. Механические колебания - это движения, которые повторяются через определенные промежутки времени. Если промежутки времени одинаковые, то такие колебания называются периодическими.

 

 

 

 

 

 

 

 

 

 

 

Колебательная система - это система взаимодействующих тел (минимум два тела), которые способны совершать колебания. Простейшими колебательными системами являются маятники.

Характеристика колебаний

Фаза определяет состояние системы, а именно координату, скорость, ускорение, энергию и др.

Циклическая частота характеризует скорость изменения фазы колебаний.

 

 

 

 

 

 

 

 

 

 

 

Начальное состояние колебательной системы характеризует начальная фаза (ф0)

Амплитуда колебаний A - это наибольшее смещение из положения равновесия

Период T - это промежуток времени, в течение которого точка выполняет одно полное колебание.

Частота колебаний - это число полных колебаний в единицу времени t.

 

 

 

 

 

 

 

 

 

 

 

Частота, циклическая частота и период колебаний соотносятся как

 

 

 

 

 

Виды колебаний

Колебания, которые происходят в замкнутых системах называются свободными или собственными колебаниями. Колебания, которые происходят под действием внешних сил, называют вынужденными. Встречаются также автоколебания (вынуждаются автоматически).

Если рассматривать колебания согласно изменяющихся характеристик (амплитуда, частота, период и др.), то их можно разделить на гармоническиезатухающиенарастающие (а также пилообразные, прямоугольные, сложные).

При свободных колебаниях в реальных системах всегда происходят потери энергии. Механическая энергия расходуется, например, на совершение работы по преодолению сил сопротивления воздуха. Под влиянием силы трения происходит уменьшение амплитуды колебаний, и через некоторое время колебания прекращаются. Очевидно, что чем больше силы сопротивления движению, тем быстрее прекращаются колебания.

Вынужденные колебания. Резонанс

Вынужденные колебания являются незатухающими. Поэтому необходимо восполнять потери энергии за каждый период колебаний. Для этого необходимо воздействовать на колеблющееся тело периодически изменяющейся силой. Вынужденные колебания совершаются с частотой, равной частоте изменения внешней силы.

 

 

 

 

 

 

 

Вынужденные колебания

Амплитуда вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с частотой колебательной системы. Это явление называется резонансом.

Например, если периодически дергать шнур в такт его собственным колебаниям, то мы заметим увеличение амплитуды его колебаний.

 

 

 

 

 

 

 

 

 

 

 

Гармоническое колебание

Это периодическое колебание, при котором координата, скорость, ускорение, характеризующие движение, изменяются по закону синуса или косинуса.

График гармонического колебания

График устанавливает зависимость смещения тела со временем. Установим к пружинному маятнику карандаш, за маятником бумажную ленту, которая равномерно перемещается. Или математический маятник заставим оставлять след. На бумаге отобразится график движения.

 

Графиком гармонического колебания является синусоида (или косинусоида). По графику колебаний можно определить все характеристики колебательного движения.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус.

Или такое колебание можно описать формулой синуса с начальной фазой .

 

 

 

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, как сила, скорость и ускорение, тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия - достигает максимального значения.

Если колебание описывать по закону косинуса

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если колебание описывать по закону синуса

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

 

 

 

 

 

 

 

 

 

Математический маятник

Это материальная точка, подвешенная на тонкой нерастяжимой и невесомой нити.

Если отклонить маятник от положения равновесия, то сила тяжести и сила упругости будут направлены под углом. Равнодействующая сила уже не будет равна нулю. Под воздействием этой силы маятник устремится к положению равновесия, но по инерции движение продолжится и маятник отклоняется в другую сторону. Равнодействующая сила его снова возвращает. Далее процесс повторяется.

 

 

 

 

 

 

 

Период колебаний математического маятника зависит от его длины, определяется по формуле

Важно где происходят колебания! На Луне и на Земле один и тот же математический маятник при одинаковых начальных условиях колебаться будет по-разному. Так как ускорение свободного падения на Луне отличается от ускорения свободного падения на Земле.

 

 

 

 

 

 

 

 

 

 

Пружинный маятник

Это груз, прикрепленный к пружине, массой которой можно пренебречь.

Пока пружина не деформирована, сила упругости на тело не действует. В пружинном маятнике колебания совершаются под действием силы упругости.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Превращение энергии

При колебательном движении соблюдается закон сохранения энергии. Рассмотрим на примере математического маятника.

Когда маятник отклоняют на высоту h, его потенциальная энергия максимальная. Когда маятник опускается, потенциальная энергия переходит в кинетическую. Причем в нижней точке, где потенциальная энергия равна нулю, кинетическая энергия максимальная и равна потенциальной энергии в верхней точке. Скорость груза в этой точке максимальная.


 

 

 

 

 

 

 

 

 

 

Упругая волна

Если тело находится в упругой среде, то колебательное движение деформирует эту среду. Из-за взаимодействия соседних частиц среды деформация передается от одних участков к другим. Это и есть волна. Например, волна на озере, если бросить камень: камень вызывает деформацию, которая распространяется в упругой среде - воде.

 

Виды волн

Волны могут быть поперечными и продольными. Представим распространение волн с помощью модели, в которой частицы среды представлена в виде совокупности шариков и пружинок.

В продольных волнах шарики испытывают смещение вдоль цепочки, а пружинки растягиваются или сжимаются. В жидкостях или газах деформация такого рода сопровождается уплотнением или разрежением. Такие волны могут распространятся в любых средах - твердых, жидких и газообразных.

Если один или несколько шариков сместятся в направлении, перпендикулярном цепочке, то возникает деформация сдвига. В результате вдоль цепочки побежит поперечная волна. Поперечные волны могут существовать только в твердых телах.

 

 

 

 

 

Характеристики волны

Длина волны - это расстояние между двумя ближайшими горбами или впадинами поперечной волны, или расстояние между двумя ближайшими сгущениями или разрежениями продольной волны.

Скорость волны - это скорость распространения колебаний.

Скорость распространения волны и длина волны зависят от среды, в которой они распространяются. Наибольшая скорость распространения волн в твердых телах, наименьшая - в газах.


Домашнее задание:

- Изучить данную тему представленную на сайте, сделать конспект.

- Выполнить "УПРАЖНЕНИЕ 12"  письменно в тетради после конспекта. 


Отправляете проделанную работу на электронный адрес lenr89@mail.ru, не забываем подписать группу и ФИО.

Категория: Теплотехники 1 курс | Добавил: lenr89
Просмотров: 18 | Загрузок: 0 | Рейтинг: 0.0/0
Всего комментариев: 0