Главная » Файлы » Лекции

Лекция №3
[ Скачать с сервера (18.0 Kb) ] 12.06.2016, 04:09

Свободное падение.

Свободное падение тел – это падение тел на Землю в вакууме при отсутствии помех. Движение тела под действием силы тяжести при отсутствии сопротивления воздуха можно считать свободным падением. Например, в свободном падении находится спортсмен, прыгающий в воду с вышки или мяч, выпущенный из руки.

В 1583 году итальянский учёный Галилео Галилей (1564-1642) установил, что при отсутствии сопротивления воздуха все тела, независимо от их массы, падают на землю с одинаковым ускорением g, которое направлено вертикально вниз. Это ускорение называется ускорение свободного падения. При свободном падении тела с небольшой высоты h от поверхности Земли (причём h намного меньше радиуса Земли RЗ, где радиус Земли RЗ ~ 6000 км) сила притяжения остаётся практически постоянной, поэтому ускорение свободного падения также остаётся постоянным.

Это заключение подтверждает опыт с падением тел в стеклянной трубке, из которой выкачан воздух. Кусочек свинца, лёгкое пёрышко и дробинка достигают дна трубки одновременно. Следовательно, они падают с одинаковым ускорением.

Свободное падение можно рассматривать как частный случай равноускоренного движения. Ускорение свободного падения зависит от высоты над уровнем моря и от географической широты места. Оно изменяется примерно от 9,83 м/с2 на полюсе и до 9,78 м/с2 на экваторе. На широте Москвы ускорение свободного падения принимается равным g = 9,8 м/с2. Поэтому в большинстве случаев при решении задач по физике ускорение свободного падения принимается равным 9,8 м/с2.

Различие в значении ускорения объясняется суточным вращением Земли и формой Земли – Земля сплюснута у полюсов, поэтому полюсный радиус Земли меньше экваториального радиуса.

Зависимость ускорения свободного падения от высоты над уровнем моря можно получить, применяя второй закон Ньютона и закон всемирного тяготения. Модуль ускорения свободного падения равен:

g = G(M /(R + h)2)

где G – гравитационная постоянная (или постоянная всемирного тяготения), G = (6,673 ± 0,003)*10-11 н*м2 / кг2 М – масса Земли, M = 5,9736*1024 кг R – радиус Земли, средний радиус Земли RЗ.СР = 6371 км, h – высота тела над уровнем моря (над поверхностью Земли).

Из этого уравнения видно, что при подъёме тела ускорение свободного падения уменьшается. Это становится заметным при подъёме на высоту более 300 км.

В некоторых районах земного шара ускорение свободного падения может отличаться от значения ускорения на данной широте. Такие отклонения наблюдаются в местах, где имеются залежи полезных ископаемых.

Движение тел по вертикали (вверх или вниз) вблизи поверхности Земли без учёта сопротивления воздуха является прямолинейным равноускоренным движением. При описании такого движения выбирают координатную ось OY, направленную вверх или вниз. Независимо от направления оси OY вектор ускорения свободного падения направлен вертикально вниз.

Формулы для вычисления координат (или высот) и скоростей примут следующий вид.

 

Криволинейное движение.

Криволинейное движение – это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). Примером криволинейного движения является движение планет, конца стрелки часов по циферблату и т.д. В общем случае скорость при криволинейном движении изменяется по величине и по направлению.

Криволинейное движение материальной точки считается равномерным движением, если модуль скорости постоянен (например, равномерное движение по окружности), и равноускоренным, если модуль и направление скорости изменяется (например, движение тела, брошенного под углом к горизонту).

Равномерное движение по окружности.

Равномерное движение по окружности – это простейший пример криволинейного движения. Например, по окружности движется конец стрелки часов по циферблату. Скорость движения тела по окружности носит название линейная скорость.

При равномерном движении тела по окружности модуль скорости тела с течением времени не изменяется, то есть v = const, а изменяется только направление вектора скорости formula-01-007. Тангенциальное ускорение в этом случае отсутствует (ar = 0), а изменение вектора скорости по направлению характеризуется величиной, которая называется центростремительное ускорение (нормальное ускорение) an или аЦС. В каждой точке траектории вектор центростремительного ускорения направлен к центру окружности по радиусу.

Модуль центростремительного ускорения равен

aЦС=v2 / R

Где v – линейная скорость, R – радиус окружности

Когда описывается движение тела по окружности, используется угол поворота радиуса – угол φ, на который за время t поворачивается радиус, проведённый из центра окружности до точки, в которой в этот момент находится движущееся тело. Угол поворота измеряется в радианах. Радиан равен углу между двумя радиусами окружности, длина дуги между которыми равна радиусу окружности (рис. 1.23).

Угловая скорость равномерного движения тела по окружности – это величина ω, равная отношению угла поворота радиуса φ к промежутку времени, в течение которого совершён этот поворот:

ω = φ / t

Единица измерения угловой скорости – радиан в секунду [рад/с]. Модуль линейной скорости определяется отношением длины пройденного пути l к промежутку времени t:

v= l / t

Линейная скорость при равномерном движении по окружности направлена по касательной в данной точке окружности. При движении точки длина l дуги окружности, пройденной точкой, связана с углом поворота φ выражением

l = Rφ

где R – радиус окружности.

Тогда в случае равномерного движения точки линейная и угловая скорости связаны соотношением:

v = l / t = Rφ / t = Rω или v = Rω

Период обращения – это промежуток времени Т, в течение которого тело (точка) совершает один оборот по окружности. Частота обращения – это величина, обратная периоду обращения – число оборотов в единицу времени (в секунду).

Центростремительное ускорение можно выразить через период Т и частоту обращения n:

aЦС = (4π2R) / T2 = 4π2Rn2

Категория: Лекции | Добавил: lenr89
Просмотров: 36 | Загрузок: 1 | Рейтинг: 0.0/0
Всего комментариев: 0
avatar